Regular Cost Functions on Infinite Trees

Christof Löding

RWTH Aachen University

Workshop TCRF at Highlights 2018

Berlin, September 21, 2018

Regular Cost Functions on Infinite Trees

1 Introduction: Parity Index and Cost Functions

2 Regular Cost Functions over Infinite Words and Trees

3 Transforming between different automaton models

- Automata $\mathcal{A} = (Q, \Sigma, q_0, \Delta, pri)$ on infinite binary trees
- Transitions of the form (q, a, q', q'')

- Automata $\mathcal{A} = (Q, \Sigma, q_0, \Delta, pri)$ on infinite binary trees
- \blacksquare Transitions of the form $(q,a,q^\prime,q^{\prime\prime})$

- Automata $\mathcal{A} = (Q, \Sigma, q_0, \Delta, pri)$ on infinite binary trees
- **Transitions of the form** (q, a, q', q'')

- Automata $\mathcal{A} = (Q, \Sigma, q_0, \Delta, pri)$ on infinite binary trees
- \blacksquare Transitions of the form $(q,a,q^\prime,q^{\prime\prime})$

- Automata $\mathcal{A} = (Q, \Sigma, q_0, \Delta, pri)$ on infinite binary trees
- **Transitions of the form** (q, a, q', q'')

- Automata $\mathcal{A} = (Q, \Sigma, q_0, \Delta, pri)$ on infinite binary trees
- \blacksquare Transitions of the form $(q,a,q^\prime,q^{\prime\prime})$

- Priority function $pri: Q \to \mathbb{N}$
- Run accepting if on each path the maximal priority appearing infinitely often is even.

Mostowski Hierarchy

The parity index of A is the pair (i, j) of highest and lowest priority it uses

Mostowski Hierarchy

The parity index of A is the pair (i, j) of highest and lowest priority it uses Deciding the levels of the hierarchy: Given: Language T and i < jQuestion: Is there an automaton of index (i, j) for T?

An Approach for a Decision Procedure

Theorem [CL08a]. The nondeterministic parity index problem can be effectively reduced to a limitedness problem for regular cost functions over infinite trees (defined by B-parity tree automata).

Given: PNTA A and target interval [i, j]

An Approach for a Decision Procedure

Theorem [CL08a]. The nondeterministic parity index problem can be effectively reduced to a limitedness problem for regular cost functions over infinite trees (defined by B-parity tree automata).

```
Given: PNTA \mathcal{A} and target interval [i, j]

\downarrow

B-PNTA \mathcal{B} with priorities [i, j] s.t.

function computed by \mathcal{B} is bounded

\Leftrightarrow

L(\mathcal{A}) can be accepted by PNTA with priorities [i, j]
```

1 Introduction: Parity Index and Cost Functions

2 Regular Cost Functions over Infinite Words and Trees

3 Transforming between different automaton models

Costs, counters, B-, and S-semantics

- set $\Gamma = \{1, \dots, k\}$ of counters
- set $Op = \{i, r, c\}$ of operations increment, reset, and check
- sequence w of counter operations $\gamma: \Gamma \to Op^*$

B-semantics:

 $cost^{B}(w) = \sup\{counter \text{ values on } c\text{-positions in } w\}$ S-semantics:

 $cost^{S}(w) = \inf\{counter \text{ values on } c\text{-positions in } w\}$

Costs, counters, B-, and S-semantics

- set $\Gamma = \{1, \ldots, k\}$ of counters
- set $Op = \{i, r, c\}$ of operations increment, reset, and check
- sequence w of counter operations $\gamma:\Gamma\to Op^*$

B-semantics:

 $cost^{B}(w) = \sup\{counter \text{ values on } c\text{-positions in } w\}$ S-semantics:

 $cost^{S}(w) = \inf\{counter \text{ values on } c\text{-positions in } w\}$

Adding an acceptance condition, β infinite sequence of priorities:
 B-semantics:

 $cost^{\mathsf{B}}(\beta, w) = \begin{cases} \infty \text{ if } \beta \text{ does not satisfy the parity condition} \\ \sup\{ \text{counter values on } \mathbf{c}\text{-positions} \} \text{ otherwise} \end{cases}$

S-semantics:

$$cost^{\mathsf{S}}(\beta, w) = \begin{cases} 0 \text{ if } \beta \text{ does not satisfy the parity condition} \\ \inf\{\text{counter values on } \mathbf{c}\text{-positions}\} \text{ otherwise} \end{cases}$$

Cost functions on infinite words

Extend transitions of nondeterministic Büchi, parity, ... automata over infinite words by counter operations: (q, a, q', γ) with $\gamma : \Gamma \to Op^*$

Cost functions on infinite words

Extend transitions of nondeterministic Büchi, parity, ... automata over infinite words by counter operations: (q, a, q', γ) with $\gamma : \Gamma \to Op^*$

Cost of an infinite input word $\boldsymbol{\alpha}$ is

B-semantics:
$$\mathcal{A}^{\mathsf{B}}(\alpha) = \inf_{\rho} cost^{\mathsf{B}}(\rho)$$

S-semantics:
$$\mathcal{A}^{\mathsf{S}}(\alpha) = \sup_{\rho} cost^{\mathsf{S}}(\rho)$$

(where ρ ranges over the runs on α)

Equivalence of cost functions

Let $f,g:D\to\mathbb{N}\cup\{\infty\}$ be two cost functions over the same domain.

Domination and equivalence of cost functions:

 $\begin{array}{ll} f \preceq g & \Leftrightarrow & \forall X \subseteq D: \ g \text{ bounded on } X \ \rightarrow f \text{ bounded on } X \\ f \approx g & \Leftrightarrow & f \preceq g \text{ and } g \preceq f \end{array}$

Example: $f, g : \{a, b\}^* \to \mathbb{N} \cup \{\infty\}$ with

$$\begin{array}{rcl} f(w) &=& 2 \cdot |w|_a \\ g(w) &=& |w| \end{array}$$

Then $f \leq g$ but not $g \leq f$ because f is bounded on b^* but g is not.

History determinism

In the classical theory of automata on infinite trees, deterministic ω -automata play an important role because they can be composed with tree automata and games.

 $Cost-\omega$ -automata cannot be determinized, in general.

There is the weaker notion of history-determinism (or good-for-games) that still admits composition with tree automata and games.

A construction of history-deterministic cost-automata on finite words is given in [CF16] (see talk of N. Fijalkow).

Theorem (Colcombet, unpublished). For each nondeterministic B- or S-parity automaton over infinite words, one can construct an equivalent history-deterministic B- or S-parity automaton.

Cost-parity alternating tree automata (cost-PATA)

• transition function of the form $\delta(q, a) = \varphi$ where φ is a positive Boolean combination of atoms (d, q, γ) with

direction $d \in \{0, 1\}$, state q, and counter action $\gamma : \Gamma \to Op^*$

Cost-parity alternating tree automata (cost-PATA)

• transition function of the form $\delta(q, a) = \varphi$ where φ is a positive Boolean combination of atoms (d, q, γ) with

direction $d \in \{0, 1\}$, state q, and counter action $\gamma : \Gamma \to Op^*$

- semantics on a tree t via a game $\mathcal{G}_{\mathcal{A},t}$:
 - Positions of the form (q, u) with state q and tree node u.
 - Let $\delta(q, t(u)) = \varphi$.
 - Players Automaton and Pathfinder determine an atom of the formula where Automaton resolves disjunctions, and Pathfinder resolves conjunctions.
 - If an atom (d, q', γ) is reached, the game continues in (q', ud).
- We write σ_A , σ_P for strategies of Automaton, Pathfinder.

Illustration of $\mathcal{G}_{\mathcal{A},t}$

Semantics of cost-PATA

- A play α in G_{A,t} has a corresponding path, state sequence, and sequence of counter actions.
 - **B-semantics**:

 $cost^{B}(\alpha) = \begin{cases} \infty \text{ if } \alpha \text{ does not satisfy the parity condition} \\ \sup\{\text{counter values on c-positions}\} \text{ otherwise} \\ \text{S-semantics:} \end{cases}$

 $cost^{S}(\alpha) = \begin{cases} 0 \text{ if } \alpha \text{ does not satisfy the parity condition} \\ \inf\{\text{counter values on } c\text{-positions}\} \text{ otherwise} \end{cases}$

B- and S-semantics $\mathcal{A}^{\mathsf{B}}, \mathcal{A}^{\mathsf{S}}$: trees $\rightarrow \mathbb{N} \cup \{\infty\}$

$$\mathcal{A}^{\mathsf{B}}(t) = \inf_{\substack{\sigma_A \ \alpha \in \sigma_A \\ \sigma_A \ \alpha \in \sigma_A}} \operatorname{cost}^{\mathsf{B}}(\alpha)$$
$$\mathcal{A}^{\mathsf{S}}(t) = \sup_{\substack{\sigma_A \ \alpha \in \sigma_A \\ \alpha \in \sigma_A}} \operatorname{cost}^{\mathsf{S}}(\alpha)$$

Domination and limitedness

Domination problem:

Given two automata computing cost functions f_1 and f_2 , decide if

 $f_1 \preceq f_2$

Domination and limitedness

Domination problem:

Given two automata computing cost functions f_1 and f_2 , decide if

$$f_1 \preceq f_2$$

For example, the limitedness problem for a B-PATA ${\mathcal A}$ is the domination problem

Domination and limitedness

Domination problem:

Given two automata computing cost functions f_1 and f_2 , decide if

$$f_1 \preceq f_2$$

For example, the limitedness problem for a B-PATA ${\mathcal A}$ is the domination problem

Open question: Is the domination problem for cost-PATA decidable?

A first decidability result

Theorem ([CL10,VB11,VB12]). The domination problem $f_1 \leq f_2$ is decidable if f_1 is given by an S-PNTA A_1 , and f_2 is given by a B-PNTA A_2 .

(The result in this form is stated in [VB11]. A detailed proof can be found [VB12]. The same technique is used in [CL10] for finite trees.)

A first decidability result

Theorem ([CL10,VB11,VB12]). The domination problem $f_1 \leq f_2$ is decidable if f_1 is given by an S-PNTA A_1 , and f_2 is given by a B-PNTA A_2 .

(The result in this form is stated in [VB11]. A detailed proof can be found [VB12]. The same technique is used in [CL10] for finite trees.)

ldea: The situation is similar to checking $L_1 \subseteq L_2$ for standard regular tree languages if

- L_1 is given by a PNTA, and
- L_2 is given by a PNTA for the complement $\overline{L_2}$ of L_2 .

 \rightsquigarrow intersection emptiness game for $L_1\cap \overline{L_2}$ on the product automaton.

A first decidability result

Theorem ([CL10,VB11,VB12]). The domination problem $f_1 \leq f_2$ is decidable if f_1 is given by an S-PNTA A_1 , and f_2 is given by a B-PNTA A_2 .

(The result in this form is stated in [VB11]. A detailed proof can be found [VB12]. The same technique is used in [CL10] for finite trees.)

ldea: The situation is similar to checking $L_1 \subseteq L_2$ for standard regular tree languages if

- L_1 is given by a PNTA, and
- L_2 is given by a PNTA for the complement $\overline{L_2}$ of L_2 .

 \rightsquigarrow intersection emptiness game for $L_1\cap \overline{L_2}$ on the product automaton.

Consequence: If we can transform arbitrary cost-PATAs into S-PNTAs and B-PNTAs, then we can solve the general domination problem.

Overview

1 Introduction: Parity Index and Cost Functions

2 Regular Cost Functions over Infinite Words and Trees

3 Transforming between different automaton models

Transformations between alternating automata

For alternating automata, one can effectively translate between Sand B- automata.

Theorem ([CL10,VB11,VB12]). Given a B-, or S-PATA, one can effectively construct an S-, or B-PATA defining an equivalent cost function.

(The result in this form is stated in [VB11]. A detailed proof can be found [VB12]. The same technique is used in [CL10] for finite trees.)

Idea for B-PATA \rightarrow S-PATA

$$\mathcal{A}^{\mathsf{B}}(t) = \inf_{\sigma_{A}} \underbrace{\sup_{\alpha \in \sigma_{A}} cost^{\mathsf{B}}(\alpha)}_{\text{value of } \sigma_{A}}$$

For $N \in \mathbb{N}$ let $\mathcal{G}_{\mathcal{A},t}^N$ be the win-lose game that is won by Automaton if she has a strategy of value $\leq N$.

• By determinacy of $\mathcal{G}_{\mathcal{A},t}^{N}$: $\mathcal{A}^{\mathsf{B}}(t) = \sup_{\sigma_{P}} \inf_{\alpha \in \sigma_{P}} cost^{\mathsf{B}}(\alpha)$

Idea for B-PATA \rightarrow S-PATA

$$\mathcal{A}^{\mathsf{B}}(t) = \inf_{\sigma_{A}} \underbrace{\sup_{\alpha \in \sigma_{A}} cost^{\mathsf{B}}(\alpha)}_{\text{value of } \sigma_{A}}$$

For $N \in \mathbb{N}$ let $\mathcal{G}_{\mathcal{A},t}^N$ be the win-lose game that is won by Automaton if she has a strategy of value $\leq N$.

- By determinacy of $\mathcal{G}_{\mathcal{A},t}^{N}$: $\mathcal{A}^{\mathsf{B}}(t) = \sup_{\sigma_{P}} \inf_{\alpha \in \sigma_{P}} cost^{\mathsf{B}}(\alpha)$
- Obtain *A* from *A* by exchanging ∧ and ∨ in the transition function → strategies σ_P of Pathfinder in *G*_{A,t} become strategies *σ*_A of Automaton in *G*_{*A*,t}, and thus
 A^B(t) = sup inf_{*σ*_A} cost^B(α)
 *α*_A^B(t) = sup inf_{*σ*_A} cost^B(α)
 *α*_A sup inf<sub>*σ*_A sup inf_{*σ*_A} cost^B(α)
 *α*_A sup inf_{*σ*_A} cost^B(α)
 *α*_A sup inf<sub>*σ*_A sup inf_{*σ*_A} cost^B(α)
 *α*_A sup inf<sub>*σ*_A sup inf_{*σ*_A} cost^B(α)
 *α*_A sup inf_{*σ*_A sup inf_{*σ}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>*

Idea for B-PATA \rightarrow S-PATA

$$\mathcal{A}^{\mathsf{B}}(t) = \inf_{\sigma_{A}} \underbrace{\sup_{\alpha \in \sigma_{A}} cost^{\mathsf{B}}(\alpha)}_{\text{value of } \sigma_{A}}$$

For $N \in \mathbb{N}$ let $\mathcal{G}_{\mathcal{A},t}^N$ be the win-lose game that is won by Automaton if she has a strategy of value $\leq N$.

By determinacy of
$$\mathcal{G}_{\mathcal{A},t}^{N}$$
: $\mathcal{A}^{\mathsf{B}}(t) = \sup_{\sigma_{P}} \inf_{\alpha \in \sigma_{P}} cost^{\mathsf{B}}(\alpha)$

Obtain *A* from *A* by exchanging ∧ and ∨ in the transition function → strategies σ_P of Pathfinder in *G*_{A,t} become strategies *σ*_A of Automaton in *G*_{*A*,t}, and thus
 A^B(t) = sup inf_{*α*∈*σ*_A} cost^B(α)

This is almost the S-semantics of $\widetilde{\mathcal{A}}$, except for $cost^{\mathsf{B}}(\alpha)$.

Compose *A* with a history deterministic ω-automaton that computes cost^B(α) using S-semantics.

Overview

Semantics of a B-PATA: $\mathcal{A}^{\mathsf{B}}(t) = \inf_{\sigma_A} \sup_{\alpha} cost^{\mathsf{B}}(\alpha)$

Semantics of a B-PATA: $\mathcal{A}^{\mathsf{B}}(t) = \inf_{\sigma_{A}} \sup_{\alpha} cost^{\mathsf{B}}(\alpha)$

If we restrict player Automaton to finite memory strategies $\sigma_{A,m}$ with memory size m, we obtain the cost function

$$\mathcal{A}_{A,m}^{\mathsf{B}}(t) = \inf_{\sigma_{A,m}} \sup_{\alpha} cost^{\mathsf{B}}(\alpha)$$

Semantics of a B-PATA: $\mathcal{A}^{\mathsf{B}}(t) = \inf_{\sigma_A} \sup_{\alpha} cost^{\mathsf{B}}(\alpha)$

If we restrict player Automaton to finite memory strategies $\sigma_{A,m}$ with memory size m, we obtain the cost function

$$\mathcal{A}_{A,m}^{\mathsf{B}}(t) = \inf_{\sigma_{A,m}} \sup_{\alpha} cost^{\mathsf{B}}(\alpha)$$

Theorem. For a given B-PATA A, and a given memory size m, one can construct a B-PNTA for the cost function $\mathcal{A}_{A,m}^{\mathsf{B}}$.

Proof: Same technique as for de-alternation of standard PATAs: Write strategy on the tree. Build B-PNTA computing value of tree with strategy annotation, using a history deterministic ω -automaton running along the path. Project away strategy annotation.

Semantics of a B-PATA: $\mathcal{A}^{\mathsf{B}}(t) = \inf_{\sigma_{A}} \sup_{\alpha} cost^{\mathsf{B}}(\alpha)$

If we restrict player Automaton to finite memory strategies $\sigma_{A,m}$ with memory size m, we obtain the cost function

$$\mathcal{A}_{A,m}^{\mathsf{B}}(t) = \inf_{\sigma_{A,m}} \sup_{\alpha} cost^{\mathsf{B}}(\alpha)$$

Theorem. For a given B-PATA \mathcal{A} , and a given memory size m, one can construct a B-PNTA for the cost function $\mathcal{A}_{A,m}^{\mathsf{B}}$.

Proof: Same technique as for de-alternation of standard PATAs: Write strategy on the tree. Build B-PNTA computing value of tree with strategy annotation, using a history deterministic ω -automaton running along the path. Project away strategy annotation.

(This technique is used for finite trees in [CL10] and for weak automata on infinite trees in [VB11]/[VB12].)

Overview

Overview

The same technique works for the other conversions:

Original conjecture: Games with B-parity conditions admit finite memory strategies on arbitrary arenas, with a memory size only depending on the number of counters and priorities.

Has been falsified [FHKS15] (see the talk of M. Skrzypczak)

Original conjecture: Games with B-parity conditions admit finite memory strategies on arbitrary arenas, with a memory size only depending on the number of counters and priorities.

Has been falsified [FHKS15] (see the talk of M. Skrzypczak)

- $\mathsf{Player}\ \mathsf{I} = \mathsf{Automaton}$
- $\mathsf{Player}\ \mathsf{II}=\mathsf{Pathfinder}$

player	counter		condition	arena	reference
1/11	arbitrary	В	safety	finite acyclic	[CL08b]

Original conjecture: Games with B-parity conditions admit finite memory strategies on arbitrary arenas, with a memory size only depending on the number of counters and priorities.

Has been falsified [FHKS15] (see the talk of M. Skrzypczak)

- $\mathsf{Player}\ \mathsf{I} = \mathsf{Automaton}$
- $\mathsf{Player}\ \mathsf{II}=\mathsf{Pathfinder}$

player	counter		condition	arena	reference
1/11	arbitrary	В	safety	finite acyclic	[CL08b]
1/11	1, no reset	В	parity	arbitrary	[Col13]/[VB12]
I	1	В	parity	chronological	[CKL10]/[VB12]

Original conjecture: Games with B-parity conditions admit finite memory strategies on arbitrary arenas, with a memory size only depending on the number of counters and priorities.

Has been falsified [FHKS15] (see the talk of M. Skrzypczak)

- $\mathsf{Player}\ \mathsf{I} = \mathsf{Automaton}$
- $\mathsf{Player}\ \mathsf{II}=\mathsf{Pathfinder}$

player	counter		condition	arena	reference
1/11	arbitrary	В	safety	finite acyclic	[CL08b]
1/11	1, no reset	В	parity	arbitrary	[Col13]/[VB12]
I	1	В	parity	chronological	[CKL10]/[VB12]
I	arbitrary	В	Büchi	chronological	[VB12]
П	arbitrary	В	co-Büchi	chronological	[VB12]

Original conjecture: Games with B-parity conditions admit finite memory strategies on arbitrary arenas, with a memory size only depending on the number of counters and priorities.

Has been falsified [FHKS15] (see the talk of M. Skrzypczak)

- $\mathsf{Player}\ \mathsf{I} = \mathsf{Automaton}$
- $\mathsf{Player}\ \mathsf{II}=\mathsf{Pathfinder}$

player	counter		condition	arena	reference
1/11	arbitrary	В	safety	finite acyclic	[CL08b]
1/11	1, no reset	В	parity	arbitrary	[Col13]/[VB12]
I	1	В	parity	chronological	[CKL10]/[VB12]
I	arbitrary	В	Büchi	chronological	[VB12]
II	arbitrary	В	co-Büchi	chronological	[VB12]
I	arbitrary	В	parity	thin tree	[FHKS15]

Implications for decidability

Relying on the finite memory results from [VB12], the following theorem is stated in [CKLVB13]:

Theorem. The domination problem $f_1 \leq f_2$ is decidable if f_1 is given by a B-coBüchi ATA, and f_2 by a B-Büchi ATA.

Implications for decidability

Relying on the finite memory results from [VB12], the following theorem is stated in [CKLVB13]:

Theorem. The domination problem $f_1 \leq f_2$ is decidable if f_1 is given by a B-coBüchi ATA, and f_2 by a B-Büchi ATA.

Weak automata are a special case of Büchi and co-Büchi automata:

Theorem [VB11]. The domination problem is decidable for cost functions defined by weak alternating tree automata, or equivalently by weak monadic second-order cost logic (cost WMSO).

Implications for decidability

Relying on the finite memory results from [VB12], the following theorem is stated in [CKLVB13]:

Theorem. The domination problem $f_1 \leq f_2$ is decidable if f_1 is given by a B-coBüchi ATA, and f_2 by a B-Büchi ATA.

Weak automata are a special case of Büchi and co-Büchi automata:

Theorem [VB11]. The domination problem is decidable for cost functions defined by weak alternating tree automata, or equivalently by weak monadic second-order cost logic (cost WMSO).

The result has been strengthened to an extension of cost WMSO with an additional fixpoint operation [BCKPVB14]. The proof uses quasi weak alternating automata [KVB11] and a transformation of two-way to one-way automata.

Conclusion

- Research on boundedness problems for tree automata, originally motivated by the parity index problem.
- Many interesting techniques have been developed in analogy to the standard theory of automata on infinite trees:
 - Composition of cost-ω-automata with games/tree automata: history-determinism
 - B-PATA ↔ S-PATA: like complementation of alternating tree automata by dualization
 - cost-PATA \rightarrow cost-PNTA: same proof strategy as in classical theory, requires finite memory determinacy
- Partial results, like decidability of domination for weak alternating cost automata and weak cost-MSO.
- The general problem of decidability of domination remains open.

References

[CL08a]	Th. Colcombet, C. Löding.
	The non-deterministic Mostowski hierarchy and distance-parity automata. ICALP 2008
[CL08b]	Th. Colcombet, C. Löding.
	The nesting-depth of disjunctive mu-calculus for tree languages and the limitedness problem. CSL 2008
[CL10]	Th. Colcombet, C. Löding.
	Theory of Regular Cost Functions over Finite Trees. LICS 2010
[VB11]	M. Vanden Boom.
	Weak Cost Monadic Logic Over Infinite Trees. MFCS 2011
[KVB11]	D. Kuperberg, M. Vanden Boom.
· · · · · · · · · · · · · · · · · · ·	Quasi-Weak Cost Automata: A New Variant of Weakness. FSTTCS 2011
[VB12]	M. Vanden Boom.
	Weak Cost Automata over Infinite Trees. PhD Thesis, 2012
[CKLVB13]	Th. Colcombet, D. Kuperberg, C. Löding., M. Vanden Boom.
	Deciding the weak definability of Büchi definable tree languages. CSL 2013
[Col13]	Th. Colcombet.
	Fonctions régulières de coût. Habilitation Thesis, 2013
[BCKPVB14]	A. Blumensath, Th. Colcombet, D. Kuperberg, P. Parys, M. Vanden Boom.
	Two-Way Cost Automata and Cost Logics over Infinite Trees. LICS 2014.
[FHKS15]	N. Fijalkow, F. Horn, D. Kuperberg, M. Skrzypczak.
	Trading Bounds for Memory in Games with Counters. ICALP 2015
[CF16]	Th. Colcombet, N. Fijalkow.
	The Bridge Between Regular Cost Functions and Omega-Regular Languages. ICALP 2016.