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Parity Nondeterministic Tree Automata (PNTA)

Automata A = (Q,Σ, q0,∆, pri) on infinite binary trees

Transitions of the form (q, a, q′, q′′)

Run of A : b

q0
(q0, b, q1, q2) ∈ ∆

a

q1
(q1, a, q3, q4) ∈ ∆

b

q3

b

q4

b

q2
(q2, b, q5, q6) ∈ ∆

b

q5

b

q6

...

Priority function pri : Q→ N
Run accepting if on each path the maximal priority appearing
infinitely often is even.
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Mostowski Hierarchy

(0, 0)

(0, 1)

(0, 2)

(0, k)

(0, k + 1)

(1, 1)

(1, 2)

(1, 3)

(1, k + 1)

(1, k + 2)

The parity index of A is the pair (i, j) of
highest and lowest priority it uses

Deciding the levels of the hierarchy:

Given: Language T and i < j
Question: Is there an automaton of index
(i, j) for T?
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An Approach for a Decision Procedure

Theorem [CL08a]. The nondeterministic parity index problem can be
effectively reduced to a limitedness problem for regular cost functions
over infinite trees (defined by B-parity tree automata).

Given: PNTA A and target interval [i, j]

↓
B-PNTA B with priorities [i, j] s.t.

function computed by B is bounded
⇔

L(A) can be accepted by PNTA with priorities [i, j]
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Costs, counters, B-, and S-semantics

set Γ = {1, . . . , k} of counters

set Op = {i, r, c} of operations increment, reset, and check

sequence w of counter operations γ : Γ→ Op∗

B-semantics:
costB(w) = sup{counter values on c-positions in w}
S-semantics:
costS(w) = inf{counter values on c-positions in w}

Adding an acceptance condition, β infinite sequence of priorities:
B-semantics:

costB(β, w) =

{
∞ if β does not satisfy the parity condition

sup{counter values on c-positions} otherwise

S-semantics:

costS(β, w) =

{
0 if β does not satisfy the parity condition

inf{counter values on c-positions} otherwise
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Cost functions on infinite words

Extend transitions of nondeterministic Büchi, parity, ... automata over
infinite words by counter operations: (q, a, q′, γ) with γ : Γ→ Op∗

q0 q1 q2

a, b

b

a : i

b : c

a, b

Cost of an infinite input word α is

B-semantics: AB(α) = inf
ρ
costB(ρ)

S-semantics: AS(α) = sup
ρ

costS(ρ)

(where ρ ranges over the runs on α)
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Equivalence of cost functions

Let f, g : D → N ∪ {∞} be two cost functions over the same
domain.

Domination and equivalence of cost functions:

f � g ⇔ ∀X ⊆ D : g bounded on X → f bounded on X
f ≈ g ⇔ f � g and g � f

Example: f, g : {a, b}∗ → N ∪ {∞} with

f(w) = 2 · |w|a
g(w) = |w|

Then f � g but not g � f because f is bounded on b∗ but g is not.
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History determinism

In the classical theory of automata on infinite trees, deterministic
ω-automata play an important role because they can be composed
with tree automata and games.

Cost-ω-automata cannot be determinized, in general.

There is the weaker notion of history-determinism (or
good-for-games) that still admits composition with tree automata
and games.

A construction of history-deterministic cost-automata on finite words
is given in [CF16] (see talk of N. Fijalkow).

Theorem (Colcombet, unpublished). For each nondeterministic B- or
S-parity automaton over infinite words, one can construct an
equivalent history-deterministic B- or S-parity automaton.
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Cost-parity alternating tree automata (cost-PATA)

transition function of the form δ(q, a) = ϕ where ϕ is a positive
Boolean combination of atoms (d, q, γ) with

direction d ∈ {0, 1}, state q, and counter action γ : Γ→ Op∗

semantics on a tree t via a game GA,t:
Positions of the form (q, u) with state q and tree node u.
Let δ(q, t(u)) = ϕ.
Players Automaton and Pathfinder determine an atom of the
formula where Automaton resolves disjunctions, and Pathfinder
resolves conjunctions.
If an atom (d, q′, γ) is reached, the game continues in (q′, ud).

We write σA, σP for strategies of Automaton, Pathfinder.
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Illustration of GA,t
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Semantics of cost-PATA

A play α in GA,t has a corresponding path, state sequence, and
sequence of counter actions.
B-semantics:

costB(α) =

{
∞ if α does not satisfy the parity condition

sup{counter values on c-positions} otherwise

S-semantics:

costS(α) =

{
0 if α does not satisfy the parity condition

inf{counter values on c-positions} otherwise

B- and S-semantics AB,AS : trees→ N ∪ {∞}

AB(t) = inf
σA

sup
α∈σA

costB(α)

AS(t) = sup
σA

inf
α∈σA

costS(α)
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Domination and limitedness

Domination problem:
Given two automata computing cost functions f1 and f2, decide if

f1 � f2

For example, the limitedness problem for a B-PATA A is the
domination problem

AB � L(A)

0

∞ ?

Open question: Is the domination problem for cost-PATA decidable?
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A first decidability result

Theorem ([CL10,VB11,VB12]). The domination problem f1 � f2 is
decidable if f1 is given by an S-PNTA A1, and f2 is given by a
B-PNTA A2.

(The result in this form is stated in [VB11]. A detailed proof can be found

[VB12]. The same technique is used in [CL10] for finite trees.)

Idea: The situation is similar to checking L1 ⊆ L2 for standard
regular tree languages if

L1 is given by a PNTA, and

L2 is given by a PNTA for the complement L2 of L2.

; intersection emptiness game for L1 ∩ L2 on the product
automaton.

Consequence: If we can transform arbitrary cost-PATAs into S-PNTAs
and B-PNTAs, then we can solve the general domination problem.
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Transformations between alternating automata

For alternating automata, one can effectively translate between S-
and B- automata.
Theorem ([CL10,VB11,VB12]). Given a B-, or S-PATA, one can
effectively construct an S-, or B-PATA defining an equivalent cost
function.

(The result in this form is stated in [VB11]. A detailed proof can be found

[VB12]. The same technique is used in [CL10] for finite trees.)

Regular Cost Functions on Infinite Trees 18



Idea for B-PATA → S-PATA

AB(t) = inf
σA

sup
α∈σA

costB(α)︸ ︷︷ ︸
value of σA

For N ∈ N let GNA,t be the win-lose game that is won by
Automaton if she has a strategy of value ≤ N .

By determinacy of GNA,t: AB(t) = sup
σP

inf
α∈σP

costB(α)

Obtain Ã from A by exchanging ∧ and ∨ in the transition
function ; strategies σP of Pathfinder in GA,t become strategies
σ̃A of Automaton in GÃ,t, and thus

AB(t) = sup
σ̃A

inf
α∈σ̃A

costB(α)

This is almost the S-semantics of Ã, except for costB(α).

Compose Ã with a history deterministic ω-automaton that
computes costB(α) using S-semantics.
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From alternating to nondeterministic B-automata

Semantics of a B-PATA: AB(t) = inf
σA

sup
α

costB(α)

If we restrict player Automaton to finite memory strategies σA,m with
memory size m, we obtain the cost function

AB
A,m(t) = inf

σA,m

sup
α

costB(α)

Theorem. For a given B-PATA A, and a given memory size m, one
can construct a B-PNTA for the cost function AB

A,m.

Proof: Same technique as for de-alternation of standard PATAs:
Write strategy on the tree. Build B-PNTA computing value of tree
with strategy annotation, using a history deterministic ω-automaton
running along the path. Project away strategy annotation.

(This technique is used for finite trees in [CL10] and for weak automata on

infinite trees in [VB11]/[VB12].)
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Overview

The same technique works for the other conversions:
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Known finite memory results

Original conjecture: Games with B-parity conditions admit finite
memory strategies on arbitrary arenas, with a memory size only
depending on the number of counters and priorities.

Has been falsified [FHKS15] (see the talk of M. Skrzypczak)

Positive finite memory results:
Player I = Automaton
Player II = Pathfinder

player counter condition arena reference

I/II arbitrary B safety finite acyclic [CL08b]
I/II 1, no reset B parity arbitrary [Col13]/[VB12]
I 1 B parity chronological [CKL10]/[VB12]
I arbitrary B Büchi chronological [VB12]
II arbitrary B co-Büchi chronological [VB12]
I arbitrary B parity thin tree [FHKS15]
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Implications for decidability

Relying on the finite memory results from [VB12], the following
theorem is stated in [CKLVB13]:
Theorem. The domination problem f1 � f2 is decidable if f1 is given
by a B-coBüchi ATA, and f2 by a B-Büchi ATA.

Weak automata are a special case of Büchi and co-Büchi automata:

Theorem [VB11]. The domination problem is decidable for cost
functions defined by weak alternating tree automata, or equivalently
by weak monadic second-order cost logic (cost WMSO).

The result has been strengthened to an extension of cost WMSO
with an additional fixpoint operation [BCKPVB14]. The proof uses
quasi weak alternating automata [KVB11] and a transformation of
two-way to one-way automata.
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Weak automata are a special case of Büchi and co-Büchi automata:
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functions defined by weak alternating tree automata, or equivalently
by weak monadic second-order cost logic (cost WMSO).

The result has been strengthened to an extension of cost WMSO
with an additional fixpoint operation [BCKPVB14]. The proof uses
quasi weak alternating automata [KVB11] and a transformation of
two-way to one-way automata.
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Conclusion

Research on boundedness problems for tree automata, originally
motivated by the parity index problem.

Many interesting techniques have been developed in analogy to
the standard theory of automata on infinite trees:

Composition of cost-ω-automata with games/tree automata:
history-determinism
B-PATA ↔ S-PATA: like complementation of alternating tree
automata by dualization
cost-PATA → cost-PNTA: same proof strategy as in classical
theory, requires finite memory determinacy

Partial results, like decidability of domination for weak
alternating cost automata and weak cost-MSO.

The general problem of decidability of domination remains open.
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Fonctions régulières de coût. Habilitation Thesis, 2013
[BCKPVB14] A. Blumensath, Th. Colcombet, D. Kuperberg, P. Parys, M. Vanden Boom.

Two-Way Cost Automata and Cost Logics over Infinite Trees. LICS 2014.
[FHKS15] N. Fijalkow, F. Horn, D. Kuperberg, M. Skrzypczak.

Trading Bounds for Memory in Games with Counters. ICALP 2015
[CF16] Th. Colcombet, N. Fijalkow.

The Bridge Between Regular Cost Functions and Omega-Regular Languages. ICALP 2016.

Regular Cost Functions on Infinite Trees 26


	Introduction: Parity Index and Cost Functions
	Regular Cost Functions over Infinite Words and Trees
	Transforming between different automaton models

